夜猫子的知识栈 夜猫子的知识栈
首页
  • 前端文章

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《Web Api》
    • 《ES6教程》
    • 《Vue》
    • 《React》
    • 《TypeScript》
    • 《Git》
    • 《Uniapp》
    • 小程序笔记
    • 《Electron》
    • JS设计模式总结
  • 《前端架构》

    • 《微前端》
    • 《权限控制》
    • monorepo
  • 全栈项目

    • 任务管理日历
    • 无代码平台
    • 图书管理系统
  • HTML
  • CSS
  • Nodejs
  • Midway
  • Nest
  • MySql
  • 其他
  • 技术文档
  • GitHub技巧
  • 博客搭建
  • Ajax
  • Vite
  • Vitest
  • Nuxt
  • UI库文章
  • Docker
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

夜猫子

前端练习生
首页
  • 前端文章

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《Web Api》
    • 《ES6教程》
    • 《Vue》
    • 《React》
    • 《TypeScript》
    • 《Git》
    • 《Uniapp》
    • 小程序笔记
    • 《Electron》
    • JS设计模式总结
  • 《前端架构》

    • 《微前端》
    • 《权限控制》
    • monorepo
  • 全栈项目

    • 任务管理日历
    • 无代码平台
    • 图书管理系统
  • HTML
  • CSS
  • Nodejs
  • Midway
  • Nest
  • MySql
  • 其他
  • 技术文档
  • GitHub技巧
  • 博客搭建
  • Ajax
  • Vite
  • Vitest
  • Nuxt
  • UI库文章
  • Docker
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • Node基础

  • 《MySQL》学习笔记

  • Midway

  • Nest

    • 开篇词
    • 学习理由
    • nest概念扫盲
    • 快速掌握 nestcli
    • 5种http数据传输方式
    • IoC 解决了什么痛点问题?
    • 如何调试 Nest 项目
    • Provider注入对象
    • 全局模块和生命周期
    • AOP 架构有什么好处?
    • 一网打尽 Nest 全部装饰器
    • Nest如何自定义装饰器
    • Metadata和Reflector
    • ExecutionContext切换上下文
    • Module和Provider的循环依赖处理
    • 如何创建动态模块
    • Nest和Express,fastify
    • Nest的Middleware
    • RxJS和Interceptor
    • 内置Pipe和自定义Pipe
    • ValidationPipe验证post请求参数
    • 如何自定义 Exception Filter
    • 图解串一串 Nest 核心概念
    • 接口如何实现多版本共存
    • Express如何使用multer实现文件上传
    • Nest使用multer实现文件上传
    • 图书管理系统
    • 大文件分片上传
    • 最完美的 OSS 上传方案
    • Nest里如何打印日志
    • 为什么Node里要用Winston打印日志
    • Nest 集成日志框架 Winston
    • 通过Desktop学Docker也太简单了
    • 你的第一个 Dockerfile
    • Nest 项目如何编写 Dockerfile
    • 提升 Dockerfile 水平的 5 个技巧
    • Docker 是怎么实现的
    • 为什么 Node 应用要用 PM2 来跑?
    • 快速入门 MySQL
    • SQL 查询语句的所有语法和函数
    • 一对一、join 查询、级联方式
    • 一对多、多对多关系的表设计
    • 子查询和 EXISTS
    • SQL 综合练习
    • MySQL 的事务和隔离级别
    • MySQL 的视图、存储过程和函数
    • Node 操作 MySQL 的两种方式
    • 快速掌握 TypeORM
    • TypeORM 一对一的映射和关联 CRUD
    • TypeORM 一对多的映射和关联 CRUD
    • TypeORM 多对多的映射和关联 CRUD
    • 在 Nest 里集成 TypeORM
    • TypeORM保存任意层级的关系
    • 生产环境为什么用TypeORM的migration迁移功能
    • Nest 项目里如何使用 TypeORM 迁移
    • 如何动态读取不同环境的配置?
    • 快速入门 Redis
    • 在 Nest 里操作 Redis
    • 为什么不用 cache-manager 操作 Redis
    • 两种登录状态保存方式:JWT、Session
    • Nest 里实现 Session 和 JWT
    • MySQL + TypeORM + JWT 实现登录注册
    • 基于 ACL 实现权限控制
    • 基于 RBAC 实现权限控制
    • access_token和refresh_token实现无感登录
    • 单token无限续期实现登录无感刷新
    • 使用 passport 做身份认证
    • passport 实现 GitHub 三方账号登录
    • passport 实现 Google 三方账号登录
    • 为什么要使用 Docker Compose ?
    • Docker 容器通信的最简单方式:桥接网络
    • Docker 支持重启策略,是否还需要 PM2
    • 快速掌握 Nginx 的 2 大核心用法
    • 基于 Nginx 实现灰度系统
    • 基于 Redis 实现分布式 session
    • Redis + 高德地图,实现附近的充电宝
    • 用 Swagger 自动生成 api 文档
    • 如何灵活创建 DTO
    • class- validator 的内置装饰器,如何自定义装饰器
    • 序列化 Entity,你不需要 VO 对象
    • 手写序列化 Entity 的拦截器
    • 使用 compodoc 生成文档
    • Node 如何发邮件?
    • 实现基于邮箱验证码的登录
    • 基于 sharp 实现 gif 压缩工具
    • 大文件如何实现流式下载?
    • Puppeteer 实现爬虫,爬取 BOSS 直聘全部前端岗位
    • 实现扫二维码登录
    • Nest 的 REPL 模式
    • 实现 Excel 导入导出
    • 如何用代码动态生成 PPT
    • 如何拿到服务器 CPU、内存、磁盘状态
    • Nest 如何实现国际化?
    • 会议室预订系统:需求分析和原型图
    • 会议室预订系统:技术方案和数据库设计
    • 会议室预订系统:用户管理模块--用户注册
    • 会议室预订系统:用户管理模块--配置抽离、登录认证鉴权
    • 会议室预订系统:用户管理模块-- interceptor、修改信息接口
    • 会议室预订系统:用户管理模块--用户列表和分页查询
    • 会议室预订系统:用户管理模块-- swagger 接口文档
    • 会议室预订系统:用户管理模块-- 用户端登录注册页面
    • 会议室预订系统:用户管理模块-- 用户端信息修改页面
    • 会议室预订系统:用户管理模块-- 头像上传
    • 会议室预订系统:用户管理模块-- 管理端用户列表页面
    • 会议室预订系统:用户管理模块-- 管理端信息修改页面
    • 会议室预订系统:会议室管理模块-后端开发
    • 会议室预订系统:会议室管理模块-管理端前端开发
    • 会议室预订系统:会议室管理模块-用户端前端开发
    • 会议室预订系统:预定管理模块-后端开发
    • 会议室预订系统:预定管理模块-管理端前端开发
    • 会议室预订系统:预定管理模块-用户端前端开发
    • 会议室预订系统:统计管理模块-后端开发
    • 会议室预订系统:统计管理模块-前端开发
    • 会议室预订系统:后端项目部署到阿里云
    • 会议室预订系统:前端项目部署到阿里云
    • 会议室预定系统:用 migration 初始化表和数据
    • 会议室预定系统:文件上传 OSS
    • 会议室预定系统:Google 账号登录后端开发
    • 会议室预定系统:Google 账号登录前端开发
    • 会议室预定系统:后端代码优化
    • 会议室预定系统:集成日志框架 winston
    • 会议室预定系统:前端代码优化
    • 会议室预定系统:全部功能测试
    • 会议室预定系统:项目总结
    • Nest 如何创建微服务?
    • Nest 的 Monorepo 和 Library
    • 用 Etcd 实现微服务配置中心和注册中心
    • Nest 集成 Etcd 做注册中心、配置中心
    • 用 Nacos 实现微服务配置中心和注册中心
    • 基于 gRPC 实现跨语言的微服务通信
    • 快速入门 ORM 框架 Prisma
    • Prisma 的全部命令
    • Prisma 的全部 schema 语法
    • Primsa Client 单表 CRUD 的全部 api
    • Prisma Client 多表 CRUD 的全部 api
    • 在 Nest 里集成 Prisma
    • 为什么前端监控系统要用 RabbitMQ?
    • 基于 Redis 实现关注关系
    • 基于 Redis 实现各种排行榜(周榜、月榜、年榜)
    • 考试系统:需求分析
    • 考试系统:技术方案和数据库设计
    • 考试系统:微服务、Lib 拆分
    • 考试系统;用户注册
    • 考试系统:用户登录、修改密码
    • 考试系统:考试微服务
    • 考试系统:登录、注册页面
    • 考试系统:修改密码、试卷列表页面
    • 考试系统:新增试卷、回收站
    • 考试系统:试卷编辑器
    • 考试系统:试卷回显、预览、保存
    • 考试系统:答卷微服务
    • 考试系统:答题页面
    • 考试系统:自动判卷
    • 考试系统:分析微服务、排行榜页面
    • 考试系统:整体测试
    • 考试系统:项目总结
    • 用 Node.js 手写 WebSocket 协议
      • 总结
    • Nest 开发 WebSocket 服务
    • 基于 Socket.io 的 room 实现群聊
    • 聊天室:需求分析和原型图
    • 聊天室:技术选型和数据库设计
    • 聊天室:用户注册
    • 聊天室:用户登录
    • 聊天室:修改密码、修改信息
    • 聊天室:好友列表、发送好友申请
    • 聊天室:创建聊天室、加入群聊
    • 聊天室:登录、注册页面开发
    • 聊天室:修改密码、信息页面开发
    • 聊天室:头像上传
    • 聊天室:好友∕群聊列表页面
    • 聊天室:添加好友弹窗、通知页面
    • 聊天室:聊天功能后端开发
    • 聊天室:聊天功能前端开发
    • 聊天室:一对一聊天
    • 聊天室:创建群聊、进入群聊
    • 聊天室:发送表情、图片、文件
    • 聊天室:收藏
    • 聊天室:全部功能测试
    • 聊天室:项目总结
    • MongoDB 快速入门
    • 使用 mongoose 操作 MongoDB 数据库
    • GraphQL 快速入门
    • Nest 开发 GraphQL 服务:实现 CRUD
    • GraphQL + Primsa + React 实现 TodoList
    • 如何调试 Nest 源码?
  • 其他

  • 服务端
  • Nest
神说要有光
2025-03-10
目录

用 Node.js 手写 WebSocket 协议

实时的双向数据通信,我们一般会用 WebSocket 来做。

HTTP 的协议格式我们很清楚,就是 header、body 这些。

那 WebSocket 的协议格式是什么样的呢?

这节我们就用 Node 来实现下 WebSocket 协议的解析。

WebSocket 严格来说和 HTTP 没什么关系,是另外一种协议格式。但是需要一次从 HTTP 到 WebSocket 的切换过程。

切换过程详细来说是这样的:

请求的时候带上这几个 header:

Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: Ia3dQjfWrAug/6qm7mTZOg==
1
2
3

前两个很容易理解,就是升级到 websocket 协议的意思。

第三个 header 是保证安全用的一个 key。

服务端返回这样的 header:

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Accept: JkE58n3uIigYDMvC+KsBbGZsp1A=
1
2
3
4

和请求 header 类似,Sec-WebSocket-Accept 是对请求带过来的 Sec-WebSocket-Key 处理之后的结果。

加入这个 header 的校验是为了确定对方一定是有 WebSocket 能力的,不然万一建立了连接对方却一直没消息,那不就白等了么。

那 Sec-WebSocket-Key 经过什么处理能得到 Sec-WebSocket-Accept 呢?

我用 node 实现了一下,是这样的:

const crypto = require('crypto');

function hashKey(key) {
  const sha1 = crypto.createHash('sha1');
  sha1.update(key + '258EAFA5-E914-47DA-95CA-C5AB0DC85B11');
  return sha1.digest('base64');
}
1
2
3
4
5
6
7

也就是用客户端传过来的 key,加上一个固定的字符串,经过 sha1 加密之后,转成 base64 的结果。

这个字符串 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 是固定的,不信你搜搜看:

随便找个有 websocket 的网站,比如知乎就有:

过滤出 ws 类型的请求,看看这几个 header,是不是就是前面说的那些。

这个 Sec-WebSocket-Key 是 wk60yiym2FEwCAMVZE3FgQ==

而响应的 Sec-WebSocket-Accept 是 XRfPnS+8xl11QWZherej/dkHPHM=

我们算算看:

是不是一毛一样!

这就是 websocket 升级协议时候的 Sec-WebSocket-Key 对应的 Sec-WebSocket-Accept 的计算过程。

这一步之后就换到 websocket 的协议了,那是一个全新的协议:

勾选 message 这一栏可以看到传输的消息,可以是文本、可以是二进制:

全新的协议?那具体是什么样的协议呢?

这样的:

大家习惯的 http 协议是 key:value 的 header 带个 body 的:

它是文本协议,每个 header 都是容易理解的字符。

这样好懂是好懂,但是传输占的空间太大了。

而 websocket 是二进制协议,一个字节可以用来存储很多信息:

比如协议的第一个字节,就存储了 FIN(结束标志)、opcode(内容类型是 binary 还是 text) 等信息。

第二个字节存储了 mask(是否有加密),payload(数据长度)。

仅仅两个字节,存储了多少信息呀!

这就是二进制协议比文本协议好的地方。

我们看到的 weboscket 的 message 的收发,其实底层都是拼成这样的格式。

只是浏览器帮我们解析了这种格式的协议数据。

这就是 weboscket 的全部流程了。

其实还是挺清晰的,一个切换协议的过程,然后是二进制的 weboscket 协议的收发。

那我们就用 Node.js 自己实现一个 websocket 服务器吧!

新建个项目:

mkdir my-websocket

cd my-websocket

npm init -y
1
2
3
4
5

在 src/ws.js 定义个 MyWebSocket 的 class:

const { EventEmitter } = require('events');
const http = require('http');

class MyWebsocket extends EventEmitter {
  constructor(options) {
    super(options);

    const server = http.createServer();
    server.listen(options.port || 8080);

    server.on('upgrade', (req, socket) => {
      
    });
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

继承 EventEmitter 是为了可以用 emit 发送一些事件,外界可以通过 on 监听这个事件来处理。

我们在构造函数里创建了一个 http 服务,当 ungrade 事件发生,也就是收到了 Connection: upgrade 的 header 的时候,返回切换协议的 header。

返回的 header 前面已经见过了,就是要对 sec-websocket-key 做下处理。

server.on('upgrade', (req, socket) => {
  this.socket = socket;
  socket.setKeepAlive(true);

  const resHeaders = [
    'HTTP/1.1 101 Switching Protocols',
    'Upgrade: websocket',
    'Connection: Upgrade',
    'Sec-WebSocket-Accept: ' + hashKey(req.headers['sec-websocket-key']),
    '',
    ''
  ].join('\r\n');
  socket.write(resHeaders);

  socket.on('data', (data) => {
    console.log(data)
  });
  socket.on('close', (error) => {
      this.emit('close');
  });
});
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

我们拿到 socket,返回上面的 header,其中 key 做的处理就是前面聊过的算法:

function hashKey(key) {
  const sha1 = crypto.createHash('sha1');
  sha1.update(key + '258EAFA5-E914-47DA-95CA-C5AB0DC85B11');
  return sha1.digest('base64');
}
1
2
3
4
5

就这么简单,就已经完成协议切换了。

不信我们试试看。

新建 src/index.js,引入我们实现的 ws 服务器,跑起来:

const MyWebSocket = require('./ws');
const ws = new MyWebSocket({ port: 8080 });

ws.on('data', (data) => {
  console.log('receive data:' + data);
});

ws.on('close', (code, reason) => {
  console.log('close:', code, reason);
});
1
2
3
4
5
6
7
8
9
10

然后新建这样一个 index.html:

<!DOCTYPE HTML>
<html>
<body>
    <script>
        const ws = new WebSocket("ws://localhost:8080");

        ws.onopen = function () {
            ws.send("发送数据");
            setTimeout(() => {
                ws.send("发送数据2");
            }, 3000)
        };

        ws.onmessage = function (evt) {
            console.log(evt)
        };

        ws.onclose = function () {
        };
    </script>
</body>

</html>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

用浏览器的 WebSocket api 建立连接,发送消息。

起个静态服务:

npx http-server . 
1

然后浏览器访问这个 html:

这时打开 devtools 你就会发现协议切换成功了:

这 3 个 header 还有 101 状态码都是我们返回的。

message 里也可以看到发送的消息:

再去服务端看看,也收到了这个消息:

只不过是 Buffer 的,也就是二进制的。

接下来只要按照协议格式解析这个 Buffer,并且生成响应格式的协议数据 Buffer 返回就可以收发 websocket 数据了。

这一部分还是比较麻烦的,我们一点点来看。

我们需要第一个字节的后四位,也就是 opcode。

这样写:

const byte1 = bufferData.readUInt8(0);
let opcode = byte1 & 0x0f; 
1
2

读取 8 位无符号整数的内容,也就是一个字节的内容。参数是偏移的字节,这里是 0。

通过位运算取出后四位,这就是 opcode 了。

然后再处理第二个字节:

第一位是 mask 标志位,后 7 位是 payload 长度。

可以这样取:

const byte2 = bufferData.readUInt8(1);
const str2 = byte2.toString(2);
const MASK = str2[0];
let payloadLength = parseInt(str2.substring(1), 2);
1
2
3
4

还是用 buffer.readUInt8 读取一个字节的内容。

先转成二进制字符串,这时第一位就是 mask,然后再截取后 7 位的子串,parseInt 成数字,这就是 payload 长度了。

这样前两个字节的协议内容就解析完了。

有同学可能问了,后面咋还有俩 payload 长度呢?

这是因为数据不一定有多长,可能需要 16 位存长度,可能需要 32 位。

于是 websocket 协议就规定了如果那个 7 位的内容不超过 125,那它就是 payload 长度。

如果 7 位的内容是 126,那就不用它了,用后面的 16 位的内容作为 payload 长度。

如果 7 位的内容是 127,也不用它了,用后面那个 64 位的内容作为 payload 长度。

其实还是容易理解的,就是 3 个 if else。

用代码写出来就是这样的:

let payloadLength = parseInt(str2.substring(1), 2);

let curByteIndex = 2;

if (payloadLength === 126) {
  payloadLength = bufferData.readUInt16BE(2);
  curByteIndex += 2;
} else if (payloadLength === 127) {
  payloadLength = bufferData.readBigUInt64BE(2);
  curByteIndex += 8;
}
1
2
3
4
5
6
7
8
9
10
11

这里的 curByteIndex 是存储当前处理到第几个字节的。

如果是 126,那就从第 3 个字节开始,读取 2 个字节也就是 16 位的长度,用 buffer.readUInt16BE 方法。

如果是 127,那就从第 3 个字节开始,读取 8 个字节也就是 64 位的长度,用 buffer.readBigUInt64BE 方法。

这样就拿到了 payload 的长度,然后再用这个长度去截取内容就好了。

但在读取数据之前,还有个 mask 要处理,这个是用来给内容解密的:

读 4 个字节,就是 mask key。

再后面的就可以根据 payload 长度读出来。

let realData = null;

if (MASK) {
  const maskKey = bufferData.slice(curByteIndex, curByteIndex + 4);  
  curByteIndex += 4;
  const payloadData = bufferData.slice(curByteIndex, curByteIndex + payloadLength);
  realData = handleMask(maskKey, payloadData);
} else {
  realData = bufferData.slice(curByteIndex, curByteIndex + payloadLength);;
}
1
2
3
4
5
6
7
8
9
10

然后用 mask key 来解密数据。

这个算法也是固定的,用每个字节的 mask key 和数据的每一位做按位异或就好了:

function handleMask(maskBytes, data) {
  const payload = Buffer.alloc(data.length);
  for (let i = 0; i < data.length; i++) {
    payload[i] = maskBytes[i % 4] ^ data[i];
  }
  return payload;
}
1
2
3
4
5
6
7

这样,我们就拿到了最终的数据!

但是传给处理程序之前,还要根据类型来处理下,因为内容分几种类型,也就是 opcode 有几种值:

const OPCODES = {
  CONTINUE: 0,
  TEXT: 1, // 文本
  BINARY: 2, // 二进制
  CLOSE: 8,
  PING: 9,
  PONG: 10,
};
1
2
3
4
5
6
7
8

我们只处理文本和二进制就好了:

handleRealData(opcode, realDataBuffer) {
    switch (opcode) {
      case OPCODES.TEXT:
        this.emit('data', realDataBuffer.toString('utf8'));
        break;
      case OPCODES.BINARY:
        this.emit('data', realDataBuffer);
        break;
      default:
        this.emit('close');
        break;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13

文本就转成 utf-8 的字符串,二进制数据就直接用 buffer 的数据。

这样,处理程序里就能拿到解析后的数据。

我们来试一下:

之前我们已经能拿到 weboscket 协议内容的 buffer 了:

而现在我们能正确解析出其中的数据:

至此,我们 websocket 协议的解析成功了!

这样的协议格式的数据叫做 frame,也就是帧:

解析可以了,接下来我们再实现数据的发送。

发送也是构造一样的 frame 格式。

定义这样一个 send 方法:

send(data) {
    let opcode;
    let buffer;
    if (Buffer.isBuffer(data)) {
      opcode = OPCODES.BINARY;
      buffer = data;
    } else if (typeof data === 'string') {
      opcode = OPCODES.TEXT;
      buffer = Buffer.from(data, 'utf8');
    } else {
      console.error('暂不支持发送的数据类型')
    }
    this.doSend(opcode, buffer);
}

doSend(opcode, bufferDatafer) {
   this.socket.write(encodeMessage(opcode, bufferDatafer));
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

根据发送的是文本还是二进制数据来对内容作处理。

然后构造 websocket 的 frame:

function encodeMessage(opcode, payload) {
  //payload.length < 126
  let bufferData = Buffer.alloc(payload.length + 2 + 0);;
  
  let byte1 = parseInt('10000000', 2) | opcode; // 设置 FIN 为 1
  let byte2 = payload.length;

  bufferData.writeUInt8(byte1, 0);
  bufferData.writeUInt8(byte2, 1);

  payload.copy(bufferData, 2);
  
  return bufferData;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

我们只处理数据长度小于 125 的情况。

第一个字节是 opcode,我们把第一位置 1 ,通过按位或的方式。

服务端给客户端回消息不需要 mask,所以第二个字节就是 payload 长度。

分别把这前两个字节的数据写到 buffer 里,指定不同的 offset:

bufferData.writeUInt8(byte1, 0);
bufferData.writeUInt8(byte2, 1);
1
2

之后把 payload 数据放在后面:

 payload.copy(bufferData, 2);
1

这样一个 websocket 的 frame 就构造完了。

我们试一下:

收到客户端消息后,每两秒回一个消息。

收发消息都成功了!

就这样,我们自己实现了一个 websocket 服务器,实现了 websocket 协议的解析和生成!

完整代码如下:

MyWebSocket:

//ws.js
const { EventEmitter } = require('events');
const http = require('http');
const crypto = require('crypto');

function hashKey(key) {
  const sha1 = crypto.createHash('sha1');
  sha1.update(key + '258EAFA5-E914-47DA-95CA-C5AB0DC85B11');
  return sha1.digest('base64');
}

function handleMask(maskBytes, data) {
  const payload = Buffer.alloc(data.length);
  for (let i = 0; i < data.length; i++) {
    payload[i] = maskBytes[i % 4] ^ data[i];
  }
  return payload;
}

const OPCODES = {
  CONTINUE: 0,
  TEXT: 1,
  BINARY: 2,
  CLOSE: 8,
  PING: 9,
  PONG: 10,
};

function encodeMessage(opcode, payload) {
  //payload.length < 126
  let bufferData = Buffer.alloc(payload.length + 2 + 0);;
  
  let byte1 = parseInt('10000000', 2) | opcode; // 设置 FIN 为 1
  let byte2 = payload.length;

  bufferData.writeUInt8(byte1, 0);
  bufferData.writeUInt8(byte2, 1);

  payload.copy(bufferData, 2);
  
  return bufferData;
}

class MyWebsocket extends EventEmitter {
  constructor(options) {
    super(options);

    const server = http.createServer();
    server.listen(options.port || 8080);

    server.on('upgrade', (req, socket) => {
      this.socket = socket;
      socket.setKeepAlive(true);

      const resHeaders = [
        'HTTP/1.1 101 Switching Protocols',
        'Upgrade: websocket',
        'Connection: Upgrade',
        'Sec-WebSocket-Accept: ' + hashKey(req.headers['sec-websocket-key']),
        '',
        ''
      ].join('\r\n');
      socket.write(resHeaders);

      socket.on('data', (data) => {
        this.processData(data);
        // console.log(data);
      });
      socket.on('close', (error) => {
          this.emit('close');
      });
    });
  }

  handleRealData(opcode, realDataBuffer) {
    switch (opcode) {
      case OPCODES.TEXT:
        this.emit('data', realDataBuffer.toString('utf8'));
        break;
      case OPCODES.BINARY:
        this.emit('data', realDataBuffer);
        break;
      default:
        this.emit('close');
        break;
    }
  }

  processData(bufferData) {
    const byte1 = bufferData.readUInt8(0);
    let opcode = byte1 & 0x0f; 
    
    const byte2 = bufferData.readUInt8(1);
    const str2 = byte2.toString(2);
    const MASK = str2[0];

    let curByteIndex = 2;
    
    let payloadLength = parseInt(str2.substring(1), 2);
    if (payloadLength === 126) {
      payloadLength = bufferData.readUInt16BE(2);
      curByteIndex += 2;
    } else if (payloadLength === 127) {
      payloadLength = bufferData.readBigUInt64BE(2);
      curByteIndex += 8;
    }

    let realData = null;
    
    if (MASK) {
      const maskKey = bufferData.slice(curByteIndex, curByteIndex + 4);  
      curByteIndex += 4;
      const payloadData = bufferData.slice(curByteIndex, curByteIndex + payloadLength);
      realData = handleMask(maskKey, payloadData);
    } 
    
    this.handleRealData(opcode, realData);
  }

  send(data) {
    let opcode;
    let buffer;
    if (Buffer.isBuffer(data)) {
      opcode = OPCODES.BINARY;
      buffer = data;
    } else if (typeof data === 'string') {
      opcode = OPCODES.TEXT;
      buffer = Buffer.from(data, 'utf8');
    } else {
      console.error('暂不支持发送的数据类型')
    }
    this.doSend(opcode, buffer);
  }

  doSend(opcode, bufferDatafer) {
    this.socket.write(encodeMessage(opcode, bufferDatafer));
  }
}

module.exports = MyWebsocket;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Index:

const MyWebSocket = require('./ws');
const ws = new MyWebSocket({ port: 8080 });

ws.on('data', (data) => {
  console.log('receive data:' + data);
  setInterval(() => {
    ws.send(data + ' ' + Date.now());
  }, 2000)
});

ws.on('close', (code, reason) => {
  console.log('close:', code, reason);
});
1
2
3
4
5
6
7
8
9
10
11
12
13

html:

<!DOCTYPE HTML>
<html>
<body>
    <script>
        const ws = new WebSocket("ws://localhost:8080");

        ws.onopen = function () {
            ws.send("发送数据");
            setTimeout(() => {
                ws.send("发送数据2");
            }, 3000)
        };

        ws.onmessage = function (evt) {
            console.log(evt)
        };

        ws.onclose = function () {
        };
    </script>
</body>

</html>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

案例代码在小册仓库 (opens new window)。

# 总结

实时性较高的需求,我们会用 websocket 实现,比如即时通讯、游戏等场景。

websocket 和 http 没什么关系,但从 http 到 websocket 需要一次切换的过程。

这个切换过程除了要带 upgrade 的 header 外,还要带 sec-websocket-key,服务端根据这个 key 算出结果,通过 sec-websocket-accept 返回。响应是 101 Switching Protocols 的状态码。

这个计算过程比较固定,就是 key + 固定的字符串 通过 sha1 加密后再 base64 的结果。

加这个机制是为了确保对方一定是 websocket 服务器,而不是随意返回了个 101 状态码。

之后就是 websocket 协议了,这是个二进制协议,我们根据格式完成了 websocket 帧的解析和生成。

这样就是一个完整的 websocket 协议的实现了。

我们自己手写了一个 websocket 服务,有没有感觉对 websocket 的理解更深了呢?

编辑 (opens new window)
上次更新: 2025/10/27 10:53:52
考试系统:项目总结
Nest 开发 WebSocket 服务

← 考试系统:项目总结 Nest 开发 WebSocket 服务→

最近更新
01
H5调用微信jssdk
09-28
02
VueVirtualScroller
09-19
03
如何调试 Nest 项目
03-10
更多文章>
Copyright © 2019-2025 Study | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式