# Class 的继承
# 简介
Class 可以通过extends
关键字实现继承,这比 ES5 的通过修改原型链实现继承,要清晰和方便很多。
class Point {
}
class ColorPoint extends Point {
}
2
3
4
5
上面代码定义了一个ColorPoint
类,该类通过extends
关键字,继承了Point
类的所有属性和方法。但是由于没有部署任何代码,所以这两个类完全一样,等于复制了一个Point
类。下面,我们在ColorPoint
内部加上代码。
class ColorPoint extends Point {
constructor(x, y, color) {
super(x, y); // 调用父类的constructor(x, y)
this.color = color;
}
toString() {
return this.color + ' ' + super.toString(); // 调用父类的toString()
}
}
2
3
4
5
6
7
8
9
10
上面代码中,constructor
方法和toString
方法之中,都出现了super
关键字,它在这里表示父类的构造函数,用来新建父类的this
对象。
**子类必须在constructor
方法中调用super
方法,否则新建实例时会报错。**这是因为子类自己的this
对象,必须先通过父类的构造函数完成塑造,得到与父类同样的实例属性和方法,然后再对其进行加工,加上子类自己的实例属性和方法。如果不调用super
方法,子类就得不到this
对象。
class Point { /* ... */ }
class ColorPoint extends Point {
constructor() {
}
}
let cp = new ColorPoint(); // ReferenceError
2
3
4
5
6
7
8
上面代码中,ColorPoint
继承了父类Point
,但是它的构造函数没有调用super
方法,导致新建实例时报错。
ES5 的继承,实质是先创造子类的实例对象this
,然后再将父类的方法添加到this
上面(Parent.apply(this)
)。ES6 的继承机制完全不同,实质是先将父类实例对象的属性和方法,加到this
上面(所以必须先调用super
方法),然后再用子类的构造函数修改this
。
如果子类没有定义constructor
方法,这个方法会被默认添加,代码如下。也就是说,不管有没有显式定义,任何一个子类都有constructor
方法。
class ColorPoint extends Point {
}
// 等同于
class ColorPoint extends Point {
constructor(...args) {
super(...args);
}
}
2
3
4
5
6
7
8
9
另一个需要注意的地方是,**在子类的构造函数中,只有调用super
之后,才可以使用this
关键字,否则会报错。**这是因为子类实例的构建,基于父类实例,只有super
方法才能调用父类实例。
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}
}
class ColorPoint extends Point {
constructor(x, y, color) {
this.color = color; // ReferenceError
super(x, y);
this.color = color; // 正确
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
上面代码中,子类的constructor
方法没有调用super
之前,就使用this
关键字,结果报错,而放在super
方法之后就是正确的。
下面是生成子类实例的代码。
let cp = new ColorPoint(25, 8, 'green');
cp instanceof ColorPoint // true
cp instanceof Point // true
2
3
4
上面代码中,实例对象cp
同时是ColorPoint
和Point
两个类的实例,这与 ES5 的行为完全一致。
最后,父类的静态方法,也会被子类继承。
class A {
static hello() {
console.log('hello world');
}
}
class B extends A {
}
B.hello() // hello world
2
3
4
5
6
7
8
9
10
上面代码中,hello()
是A
类的静态方法,B
继承A
,也继承了A
的静态方法。
# Object.getPrototypeOf()
Object.getPrototypeOf
方法可以用来从子类上获取父类。
Object.getPrototypeOf(ColorPoint) === Point
// true
2
因此,可以使用这个方法判断,一个类是否继承了另一个类。
# super 关键字
super
这个关键字,既可以当作函数使用,也可以当作对象使用。在这两种情况下,它的用法完全不同。
第一种情况,super
作为函数调用时,代表父类的构造函数。ES6 要求,子类的构造函数必须执行一次super
函数。
class A {}
class B extends A {
constructor() {
super();
}
}
2
3
4
5
6
7
上面代码中,子类B
的构造函数之中的super()
,代表调用父类的构造函数。这是必须的,否则 JavaScript 引擎会报错。
注意,super
虽然代表了父类A
的构造函数,但是返回的是子类B
的实例,即super
内部的this
指的是B
的实例,因此super()
在这里相当于A.prototype.constructor.call(this)
。
class A {
constructor() {
console.log(new.target.name);
}
}
class B extends A {
constructor() {
super();
}
}
new A() // A
new B() // B
2
3
4
5
6
7
8
9
10
11
12
上面代码中,new.target
指向当前正在执行的函数。可以看到,在super()
执行时,它指向的是子类B
的构造函数,而不是父类A
的构造函数。也就是说,super()
内部的this
指向的是B
。
作为函数时,super()
只能用在子类的构造函数之中,用在其他地方就会报错。
class A {}
class B extends A {
m() {
super(); // 报错
}
}
2
3
4
5
6
7
上面代码中,super()
用在B
类的m
方法之中,就会造成语法错误。
第二种情况,super
作为对象时,在普通方法中,指向父类的原型对象;在静态方法中,指向父类。
class A {
p() {
return 2;
}
}
class B extends A {
constructor() {
super();
console.log(super.p()); // 2
}
}
let b = new B();
2
3
4
5
6
7
8
9
10
11
12
13
14
上面代码中,子类B
当中的super.p()
,就是将super
当作一个对象使用。这时,super
在普通方法之中,指向A.prototype
,所以super.p()
就相当于A.prototype.p()
。
这里需要注意,由于super
指向父类的原型对象,所以定义在父类实例上的方法或属性,是无法通过super
调用的。
class A {
constructor() {
this.p = 2; // 这是定于在实例上的属性
}
}
class B extends A {
get m() {
return super.p;
}
}
let b = new B();
b.m // undefined
2
3
4
5
6
7
8
9
10
11
12
13
14
上面代码中,p
是父类A
实例的属性,super.p
就引用不到它。
如果属性定义在父类的原型对象上,super
就可以取到。
class A {}
A.prototype.x = 2;
class B extends A {
constructor() {
super();
console.log(super.x) // 2
}
}
let b = new B();
2
3
4
5
6
7
8
9
10
11
上面代码中,属性x
是定义在A.prototype
上面的,所以super.x
可以取到它的值。
ES6 规定,在子类普通方法中通过super
调用父类的方法时,方法内部的this
指向当前的子类实例。
class A {
constructor() {
this.x = 1;
}
print() {
console.log(this.x);
}
}
class B extends A {
constructor() {
super();
this.x = 2;
}
m() {
super.print();
}
}
let b = new B();
b.m() // 2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
上面代码中,super.print()
虽然调用的是A.prototype.print()
,但是A.prototype.print()
内部的this
指向子类B
的实例,导致输出的是2
,而不是1
。也就是说,实际上执行的是super.print.call(this)
。
由于this
指向子类实例,所以如果通过super
对某个属性赋值,这时super
就是this
,赋值的属性会变成子类实例的属性。
class A {
constructor() {
this.x = 1;
}
}
class B extends A {
constructor() {
super();
this.x = 2;
super.x = 3;
console.log(super.x); // undefined
console.log(this.x); // 3
}
}
let b = new B();
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
上面代码中,super.x
赋值为3
,这时等同于对this.x
赋值为3
。而当读取super.x
的时候,读的是A.prototype.x
,所以返回undefined
。
如果super
作为对象,用在静态方法之中,这时super
将指向父类,而不是父类的原型对象。
class Parent {
static myMethod(msg) {
console.log('static', msg);
}
myMethod(msg) {
console.log('instance', msg);
}
}
class Child extends Parent {
static myMethod(msg) {
super.myMethod(msg);
}
myMethod(msg) {
super.myMethod(msg);
}
}
Child.myMethod(1); // static 1
var child = new Child();
child.myMethod(2); // instance 2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
上面代码中,super
在静态方法之中指向父类,在普通方法之中指向父类的原型对象。
另外,在子类的静态方法中通过super
调用父类的方法时,方法内部的this
指向当前的子类,而不是子类的实例。
class A {
constructor() {
this.x = 1;
}
static print() {
console.log(this.x);
}
}
class B extends A {
constructor() {
super();
this.x = 2;
}
static m() {
super.print();
}
}
B.x = 3;
B.m() // 3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
上面代码中,静态方法B.m
里面,super.print
指向父类的静态方法。这个方法里面的this
指向的是B
,而不是B
的实例。
注意,使用super
的时候,必须显式指定是作为函数、还是作为对象使用,否则会报错。
class A {}
class B extends A {
constructor() {
super();
console.log(super); // 报错
}
}
2
3
4
5
6
7
8
上面代码中,console.log(super)
当中的super
,无法看出是作为函数使用,还是作为对象使用,所以 JavaScript 引擎解析代码的时候就会报错。这时,如果能清晰地表明super
的数据类型,就不会报错。
class A {}
class B extends A {
constructor() {
super();
console.log(super.valueOf() instanceof B); // true
}
}
let b = new B();
2
3
4
5
6
7
8
9
10
上面代码中,super.valueOf()
表明super
是一个对象,因此就不会报错。同时,由于super
使得this
指向B
的实例,所以super.valueOf()
返回的是一个B
的实例。
最后,由于对象总是继承其他对象的,所以可以在任意一个对象中,使用super
关键字。
var obj = {
toString() {
return "MyObject: " + super.toString();
}
};
obj.toString(); // MyObject: [object Object]
2
3
4
5
6
7
# 类的 prototype 属性和__proto__属性
大多数浏览器的 ES5 实现之中,每一个对象都有__proto__
属性,指向对应的构造函数的prototype
属性。Class 作为构造函数的语法糖,同时有prototype
属性和__proto__
属性,因此同时存在两条继承链。
(1)子类的__proto__
属性,表示构造函数的继承,总是指向父类。
(2)子类prototype
属性的__proto__
属性,表示方法的继承,总是指向父类的prototype
属性。
class A {
name=123
}
class B extends A {
age=18
showname(){
console.log(this.name,'name')
}
}
b.prototype.__proto__ = c.prototype
const obj=new b()
obj.age
// 该原型为了获取静态方法
B.__proto__ === A // true
// 设置在 prototype 上的原型是为了获取实例方法
B.prototype.__proto__ === A.prototype // true
// 关于属性的继承
// 属性的继承比较麻烦无法使用原型的方式来实现继承, extends 后使用了 [[HomeObject]] 进行了处理
// 当一个函数被定义为类或者对象方法时,它的 [[HomeObject]] 属性就成为了该对象。
// 然后使用 super 关键字使用它来解析(resolve)父原型及其方法
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
上面代码中,子类B
的__proto__
属性指向父类A
,子类B
的prototype
属性的__proto__
属性指向父类A
的prototype
属性。
这样的结果是因为,类的继承是按照下面的模式实现的。
class A {
}
class B {
}
// B 的实例继承 A 的实例
Object.setPrototypeOf(B.prototype, A.prototype);
// B 继承 A 的静态属性
Object.setPrototypeOf(B, A);
const b = new B();
2
3
4
5
6
7
8
9
10
11
12
13
《对象的扩展》一章给出过Object.setPrototypeOf
方法的实现。
Object.setPrototypeOf = function (obj, proto) {
obj.__proto__ = proto;
return obj;
}
2
3
4
因此,就得到了上面的结果。
Object.setPrototypeOf(B.prototype, A.prototype);
// 等同于
B.prototype.__proto__ = A.prototype;
Object.setPrototypeOf(B, A);
// 等同于
B.__proto__ = A;
2
3
4
5
6
7
这两条继承链,可以这样理解:作为一个对象,子类(B
)的原型(__proto__
属性)是父类(A
);作为一个构造函数,子类(B
)的原型对象(prototype
属性)是父类的原型对象(prototype
属性)的实例。
B.prototype = Object.create(A.prototype);
// 等同于
B.prototype.__proto__ = A.prototype;
2
3
extends
关键字后面可以跟多种类型的值。
class B extends A {
}
2
上面代码的A
,只要是一个有prototype
属性的函数,就能被B
继承。由于函数都有prototype
属性(除了Function.prototype
函数),因此A
可以是任意函数。
下面,讨论两种情况。第一种,子类继承Object
类。
class A extends Object {
}
A.__proto__ === Object // true
A.prototype.__proto__ === Object.prototype // true
2
3
4
5
这种情况下,A
其实就是构造函数Object
的复制,A
的实例就是Object
的实例。
第二种情况,不存在任何继承。
class A {
}
A.__proto__ === Function.prototype // true
A.prototype.__proto__ === Object.prototype // true
2
3
4
5
这种情况下,A
作为一个基类(即不存在任何继承),就是一个普通函数,所以直接继承Function.prototype
。但是,A
调用后返回一个空对象(即Object
实例),所以A.prototype.__proto__
指向构造函数(Object
)的prototype
属性。
# 实例的 __proto__ 属性
子类实例的__proto__
属性的__proto__
属性,指向父类实例的__proto__
属性。也就是说,子类的原型的原型,是父类的原型。
var p1 = new Point(2, 3);
var p2 = new ColorPoint(2, 3, 'red');
p2.__proto__ === p1.__proto__ // false
p2.__proto__.__proto__ === p1.__proto__ // true
2
3
4
5
上面代码中,ColorPoint
继承了Point
,导致前者原型的原型是后者的原型。
因此,通过子类实例的__proto__.__proto__
属性,可以修改父类实例的行为。
p2.__proto__.__proto__.printName = function () {
console.log('Ha');
};
p1.printName() // "Ha"
2
3
4
5
上面代码在ColorPoint
的实例p2
上向Point
类添加方法,结果影响到了Point
的实例p1
。
# 原生构造函数的继承
原生构造函数是指语言内置的构造函数,通常用来生成数据结构。ECMAScript 的原生构造函数大致有下面这些。
- Boolean()
- Number()
- String()
- Array()
- Date()
- Function()
- RegExp()
- Error()
- Object()
以前,这些原生构造函数是无法继承的,比如,不能自己定义一个Array
的子类。
function MyArray() {
Array.apply(this, arguments);
}
MyArray.prototype = Object.create(Array.prototype, {
constructor: {
value: MyArray,
writable: true,
configurable: true,
enumerable: true
}
});
2
3
4
5
6
7
8
9
10
11
12
上面代码定义了一个继承 Array 的MyArray
类。但是,这个类的行为与Array
完全不一致。
var colors = new MyArray();
colors[0] = "red";
colors.length // 0
colors.length = 0;
colors[0] // "red"
2
3
4
5
6
之所以会发生这种情况,是因为子类无法获得原生构造函数的内部属性,通过Array.apply()
或者分配给原型对象都不行。原生构造函数会忽略apply
方法传入的this
,也就是说,原生构造函数的this
无法绑定,导致拿不到内部属性。
ES5 是先新建子类的实例对象this
,再将父类的属性添加到子类上,由于父类的内部属性无法获取,导致无法继承原生的构造函数。比如,Array
构造函数有一个内部属性[[DefineOwnProperty]]
,用来定义新属性时,更新length
属性,这个内部属性无法在子类获取,导致子类的length
属性行为不正常。
下面的例子中,我们想让一个普通对象继承Error
对象。
var e = {};
Object.getOwnPropertyNames(Error.call(e))
// [ 'stack' ]
Object.getOwnPropertyNames(e)
// []
2
3
4
5
6
7
上面代码中,我们想通过Error.call(e)
这种写法,让普通对象e
具有Error
对象的实例属性。但是,Error.call()
完全忽略传入的第一个参数,而是返回一个新对象,e
本身没有任何变化。这证明了Error.call(e)
这种写法,无法继承原生构造函数。
ES6 允许继承原生构造函数定义子类,因为 ES6 是先新建父类的实例对象this
,然后再用子类的构造函数修饰this
,使得父类的所有行为都可以继承。下面是一个继承Array
的例子。
class MyArray extends Array {
constructor(...args) {
super(...args);
}
}
var arr = new MyArray();
arr[0] = 12;
arr.length // 1
arr.length = 0;
arr[0] // undefined
2
3
4
5
6
7
8
9
10
11
12
上面代码定义了一个MyArray
类,继承了Array
构造函数,因此就可以从MyArray
生成数组的实例。这意味着,ES6 可以自定义原生数据结构(比如Array
、String
等)的子类,这是 ES5 无法做到的。
上面这个例子也说明,extends
关键字不仅可以用来继承类,还可以用来继承原生的构造函数。因此可以在原生数据结构的基础上,定义自己的数据结构。下面就是定义了一个带版本功能的数组。
class VersionedArray extends Array {
constructor() {
super();
this.history = [[]];
}
commit() {
this.history.push(this.slice());
}
revert() {
this.splice(0, this.length, ...this.history[this.history.length - 1]);
}
}
var x = new VersionedArray();
x.push(1);
x.push(2);
x // [1, 2]
x.history // [[]]
x.commit();
x.history // [[], [1, 2]]
x.push(3);
x // [1, 2, 3]
x.history // [[], [1, 2]]
x.revert();
x // [1, 2]
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
上面代码中,VersionedArray
会通过commit
方法,将自己的当前状态生成一个版本快照,存入history
属性。revert
方法用来将数组重置为最新一次保存的版本。除此之外,VersionedArray
依然是一个普通数组,所有原生的数组方法都可以在它上面调用。
下面是一个自定义Error
子类的例子,可以用来定制报错时的行为。
class ExtendableError extends Error {
constructor(message) {
super();
this.message = message;
this.stack = (new Error()).stack;
this.name = this.constructor.name;
}
}
class MyError extends ExtendableError {
constructor(m) {
super(m);
}
}
var myerror = new MyError('ll');
myerror.message // "ll"
myerror instanceof Error // true
myerror.name // "MyError"
myerror.stack
// Error
// at MyError.ExtendableError
// ...
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
注意,继承Object
的子类,有一个行为差异 (opens new window)。
class NewObj extends Object{
constructor(){
super(...arguments);
}
}
var o = new NewObj({attr: true});
o.attr === true // false
2
3
4
5
6
7
上面代码中,NewObj
继承了Object
,但是无法通过super
方法向父类Object
传参。这是因为 ES6 改变了Object
构造函数的行为,一旦发现Object
方法不是通过new Object()
这种形式调用,ES6 规定Object
构造函数会忽略参数。
# Mixin 模式的实现
Mixin 指的是多个对象合成一个新的对象,新对象具有各个组成成员的接口。它的最简单实现如下。
const a = {
a: 'a'
};
const b = {
b: 'b'
};
const c = {...a, ...b}; // {a: 'a', b: 'b'}
2
3
4
5
6
7
上面代码中,c
对象是a
对象和b
对象的合成,具有两者的接口。
下面是一个更完备的实现,将多个类的接口“混入”(mix in)另一个类。
function mix(...mixins) {
class Mix {
constructor() {
for (let mixin of mixins) {
copyProperties(this, new mixin()); // 拷贝实例属性
}
}
}
for (let mixin of mixins) {
copyProperties(Mix, mixin); // 拷贝静态属性
copyProperties(Mix.prototype, mixin.prototype); // 拷贝原型属性
}
return Mix;
}
function copyProperties(target, source) {
for (let key of Reflect.ownKeys(source)) {
if ( key !== 'constructor'
&& key !== 'prototype'
&& key !== 'name'
) {
let desc = Object.getOwnPropertyDescriptor(source, key);
Object.defineProperty(target, key, desc);
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
上面代码的mix
函数,可以将多个对象合成为一个类。使用的时候,只要继承这个类即可。
class DistributedEdit extends mix(Loggable, Serializable) {
// ...
}
2
3
# 在构造器中的改写
注意:父类构造器总是使用它自己的字段值,而不是被重写的那一个。
思考此示例:
class Animal {
constructor() {
this.name = 'animal';
this.m()
}
m(){
alert(this.name); // (*)
}
}
class Rabbit extends Animal {
constructor() {
super()
this.name = 'rabbit'; // 改写字段
}
}
new Animal(); // animal
new Rabbit(); // animal
alert(new Rabbit().name) // rabbit
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
这里,Rabbit
继承自 Animal
,并且用它自己的值重写了 name
字段。
因为 Rabbit
中没有自己的构造器,所以 Animal
的构造器被调用了。
有趣的是在这两种情况下:new Animal()
和 new Rabbit()
,在 (*)
行的 alert
都打印了 animal
。
# 但如果是改写方法呢?
class Animal {
showName() { // 而不是 this.name = 'animal'
alert('animal');
}
constructor() {
this.showName(); // 而不是 alert(this.name);
}
}
class Rabbit extends Animal {
showName() {
alert('rabbit');
}
}
new Animal(); // animal
new Rabbit(); // rabbit
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
这才是我们本来所期待的结果。当父类构造器在派生的类中被调用时,它会使用被重写的方法。
……但对于类字段并非如此。正如前文所述,父类构造器总是使用父类的字段。
这里为什么会有这样的区别呢?
实际上,原因在于字段初始化的顺序。类字段是这样初始化的:
- 对于基类(还未继承任何东西的那种),在构造函数调用前初始化。
- 对于派生类,在
super()
后立刻初始化。
在我们的例子中,Rabbit
是派生类,里面没有 constructor()
。正如先前所说,这相当于一个里面只有 super(...args)
的空构造器。
所以,new Rabbit()
调用了 super()
,因此它执行了父类构造器,并且(根据派生类规则)只有在此之后,它的类字段才被初始化。在父类构造器被执行的时候,Rabbit
还没有自己的类字段,这就是为什么 Animal
类字段被使用了。
这种字段与方法之间微妙的区别只特定于 JavaScript。
幸运的是,这种行为仅在一个被重写的字段被父类构造器使用时才会显现出来。
如果出问题了,我们可以通过使用方法或者 getter/setter 替代类字段,来修复这个问题。
注意
尽量必要在继承中改写父类的字段,因为这往往会导致bug的发生,除非你可以确定这个重写的字段不会被父类构造器使用
# [[HomeObject]]
接下来深入探索 super 的细节。
当一个函数被定义为类或者对象方法时,它的 [[HomeObject]]
属性就成为了该对象。
然后 super
使用它来解析(resolve)父原型及其方法。
让我们看看它是怎么工作的,首先,对于普通对象:
let animal = {
name: "Animal",
eat() { // animal.eat.[[HomeObject]] == animal
alert(`${this.name} eats.`);
}
};
let rabbit = {
__proto__: animal, // 继承自animal
name: "Rabbit",
eat() { // rabbit.eat.[[HomeObject]] == rabbit
super.eat();
}
};
let longEar = {
__proto__: rabbit, // 继承自rabbitl
name: "Long Ear",
eat() { // longEar.eat.[[HomeObject]] == longEar
super.eat();
}
};
// 正确执行
longEar.eat(); // Long Ear eats.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
正如我们之前所知道的,函数通常都是“自由”的,并没有绑定到 JavaScript 中的对象。正因如此,它们可以在对象之间复制,并用另外一个 this
调用它。
[[HomeObject]]
的存在违反了这个原则,因为方法记住了它们的对象。[[HomeObject]]
不能被更改,所以这个绑定是永久的。
在 JavaScript 语言中 [[HomeObject]]
仅被用于 super
。所以,如果一个方法不使用 super
,那么我们仍然可以视它为自由的并且可在对象之间复制。但是用了 super
再这样做可能就会出错。
let animal = {
sayHi() {
alert(`I'm an animal`);
}
};
// rabbit 继承自 animal
let rabbit = {
__proto__: animal,
sayHi() {
super.sayHi();
}
};
let plant = {
sayHi() {
alert("I'm a plant");
}
};
// tree 继承自 plant
let tree = {
__proto__: plant,
sayHi: rabbit.sayHi // (*)
};
tree.sayHi(); // I'm an animal (?!?)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
调用 tree.sayHi()
显示 “I’m an animal”。这绝对是错误的。
原因很简单:
- 在
(*)
行,tree.sayHi
方法是从rabbit
复制而来。也许我们只是想避免重复代码? - 它的
[[HomeObject]]
是rabbit
,因为它是在rabbit
中创建的。没有办法修改[[HomeObject]]
。 tree.sayHi()
内具有super.sayHi()
。它从rabbit
中上溯,然后从animal
中获取方法。